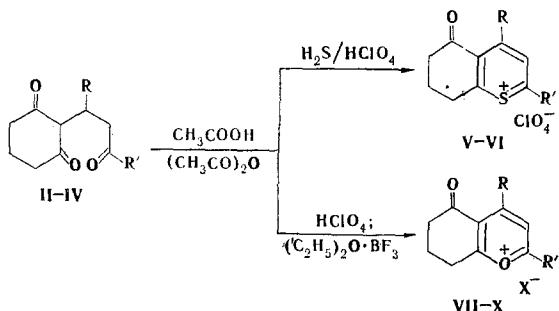


5-OXOTETRAHYDROTHIO- AND 5-OXOTETRAHYDROCHROMYLUM SALTS


V. G. Kharchenko, L. I. Markova,
and K. M. Korshunova

UDC 547.814.1'818'594.3.07

It is known that 2-[3-(1,3-diphenylpropan-1-onyl)]cyclohexane-1,3-dione (I) is not capable of undergoing conversion to 5-oxotetrahydrothiochromylum salts under the influence of hydrogen sulfide under acid catalysis conditions [1].

We have observed for the first time that oxo-1,5-diketones that contain methoxy groups in the phenyl substituents, viz., 2-[3-[1-(p-methoxyphenyl)-3-phenylpropan-1-onyl]]- (II) and 2-[3-[1,3-di(p-methoxyphenyl)propan-1-onyl]]cyclohexane-1,3-dione (III), are converted to the corresponding 5-oxo-5,6,7,8-tetrahydrothiochromylum salts (V, VI), with mp 148-150 and 116-119°C, in 37 and 38% yields on treatment with $H_2S/HClO_4$ in a mixture of glacial acetic acid with acetic anhydride (8:2).

We found that triketones II and III and 2-[3-[1-phenyl-3-(p-methoxyphenyl)propan-1-onyl]]cyclohexane-1,3-dione (IV) react with boron trifluoride etherate, and triketone II reacts with perchloric acid in a mixture of glacial acetic acid with acetic anhydride (8:2) to give 5-oxo-5,6,7,8-tetrahydrochromylum salts (VII-X), with mp 114-116, 203-205, 200-203, and 175-178°C, in 31, 39, 13, and 48% yields, respectively.

II, V, VIII, IX $R=C_6H_5$, $R'=C_6H_4-OCH_3-p$; III, VI, X $R=R'=C_6H_4-OCH_3-p$; IV, VII $R=C_6H_5-OCH_3-p$, $R'=C_6H_5$; VII, IX, X $X=BF_4^-$, VIII $X=ClO_4^-$

Thus for the first time we have obtained tetrahydrothiochromylum (V, VI) and tetrahydrochromylum (VII-X) salts that contain a carbonyl group in the 5 position. The methoxyphenyl groups in the 2 and 4 positions of the intermediately formed 5-oxotetrahydrothiochromenes and their isoelectronic analogs apparently increase the electron density in these positions of the heterocycles, thereby promoting salt formation. The new reaction of oxo-1,5-diketones opens up extensive possibilities for syntheses based on tetrahydrothiochromylum and tetrahydrochromylum salts.

The results of elementary analysis of V-X for their C, H, Cl, and S content are in agreement with the calculated values, and the IR spectra confirm the adopted structures.

LITERATURE CITED

1. V. G. Kharchenko, L. I. Markova, and K. M. Korshunova, *Zh. Org. Khim.*, No. 3, 663 (1976).

N. G. Chernyshevskii Saratov State University, Saratov 410601. Translated from *Khimiya Geterotsiklicheskikh Soedinenii*, No. 5, pp. 708-709, May, 1982. Original article submitted November 5, 1981.